Nitro Complexes of Ruthenium(III) as Oxidation Catalysts. Chemically Catalyzed, Net Electrochemical Oxidation of Triphenylphosphine

Sir:

cis-[Ru^{II}(bpy)₂(NO₂)Cl] (bpy = 2,2'-bipyridine) and related complexes can be oxidized to Ru(III), but as Ru(III) are only kinetic transients. Their stability is limited by a facile intermolecular disproportionation reaction (reactions 1 and 2), which gives both nitrosyl and nitrato complexes as prod-

 $2[Ru^{III} (bpy)_2(NO,)Cl]^+$

$$\longrightarrow [(bpy)_2 ClRu^{[]} NO]^+ + [(NO_3)RuCl(bpy)_2]^+ (1)$$

$$[\operatorname{Ru}^{||}(\operatorname{bpy})_{2}(\operatorname{NO})\operatorname{Cl}]^{+} \xrightarrow[+e^{-}]{} [\operatorname{Ru}^{||}(\operatorname{bpy})_{2}(\operatorname{NO})\operatorname{Cl}]^{2^{+}}(2)$$

ucts.¹ In the disproportionation reaction, a two-electron oxidation occurs at a nitro group on one ruthenium and the corresponding reduction at both metal ($Ru^{III} \rightarrow Ru^{II}$) and nitrosyl ($Ru^+NO \rightarrow Ru-NO$) sites. Nitrosyl complexes like [$Ru(bpy)_2(^+NO)Cl$]²⁺ are known to undergo reversible electron transfer localized largely at the NO group (reaction 2).² In reaction 1, [$Ru^{III}(bpy)_2(NO_2)Cl$]⁺ acts as an oxide donor, two-electron acceptor oxidant. Its formal reduction potential (eq 3) has been determined to be 0.31 V (0.72 V at pH 7) in 1.0 M aqueous NaCl at 25.0 °C vs. NHE and that for the related pyridine complex, [$Ru^{III}(bpy)_2(NO_2)py$]²⁺, has been estimated to be ≥ 0.26 V (≥ 0.67 V at pH 7).¹

$$[Ru^{III}(bpy)_2(NO_2)CI]^+ + H_2O + 2e \rightarrow [Ru^{II}(bpy)_2(\dot{N}O)CI]^+ + 2OH^- (3)$$

Even though disproportionation (reaction 1) is a competing pathway, in the presence of a sufficiently reactive substrate, it should be possible to capture the nitroruthenium(III) intermediates and so to exploit their properties as oxidants. Electrochemical oxidation of an acetonitrile solution (0.1 M $[N(C_4H_9)_4](PF_6)$) containing $[Ru(bpy)_2(NO_2)py]^+$ (1 × 10^{-3} M) and triphenylphosphine (3 × 10^{-3} M) at 1.15 V vs. the saturated sodium chloride calomel electrode (n = 2.0/Ruby coulometry)³ gave as products $[Ru(bpy)_2(NO)py]^{3+}$ (by cyclic voltammetry; Figure 1) and triphenylphosphine oxide (by IR, $\nu(P=0)$ 1194 cm⁻¹). Oxidation of the Ru(II) complex occurs at $E_{p,a} = 1.06$ V. The results of the experiment show that although oxidation of PPh₃ and disproportionation may be competing processes, disproportionation is unimportant under the conditions of the experiment,⁴ and the net reaction is

$$[Ru^{II}(bpy)_{2}(NO_{2})py]^{+} + PPh_{3}$$

$$\xrightarrow{-2e^{-}} [Ru^{II}(bpy)_{2}(^{+}NO)py]^{3+} + OPPh_{3} \quad (4)$$

Electrochemical oxidation of $[Ru(bpy)_2(NO_2)Cl]$ in the presence of PPh₃ also gave OPPh₃ and it was possible to study the reaction in detail. The $[Ru^{III}(bpy)_2(NO_2)Cl]^+$ -

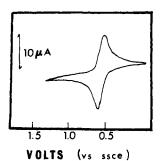


Figure 1. Cyclic voltammogram following electrolysis at 1.15 V (n = 2.0/Ru by coulometry) of a solution containing initially [Ru-(bpy)₂(NO₂)py]⁺ (1 × 10⁻³ M) and PPh₃ (3 × 10⁻³ M) in 0.1 M [N(C₄H₉)₄]PF₆-CH₃CN vs. the SSCE.

 $[Ru^{II}(bpy)_2(NO_2)CI]$ couple is reversible on the cyclic voltammetry time scale (200 mV/s; $E_{1/2} = 0.58$ V in acetonitrile).³ Electrochemical oxidation (at 0.80 V) of ¹⁸O-enriched $[Ru(bpy)_2(NO_2)Cl]^5$ (5 × 10⁻⁴ M) in dichloromethane in the presence of a threefold excess of PPh_3 gave n = 2.0 and as products $[Ru(bpy)_2(NO)Cl]^{2+}$ and $Ph_3P=O$. The extent of ¹⁸O labeling in the OPPh₃ product was identical with that in the initial nitro complex as shown by $\nu(N^{18}O)/\nu(N^{16}O)$ and $\nu(P^{18}O)/\nu(P^{16}O)$ ratios in the IR.⁷ The initial step in the electrochemical experiment is oxidation of Ru(II) to Ru(III) which is followed by oxidation of PPh₃ to OPPh₃. The rate of the reaction between $[Ru^{III}(bpy)_2(NO_2)CI]^+$ and PPh₃ was studied by chronoamperometry. The reaction is first order in both $[Ru^{III}(bpy)_2(NO_2)CI]^+$ and PPh₃, and in propylene carbonate as solvent, $k(25.0 \text{ °C}, I = 0.2) = 200 \pm 10 \text{ M}^{-1} \text{ s}^{-1}$. The reaction is considerably more rapid than the rate of disproportionation of $[Ru(bpy)_2(NO_2)Cl]^+$ (reaction 1) under the same conditions $(k = 3.0 \text{ M}^{-1} \text{ s}^{-1})$,¹ which explains why Ru(III)-NO₂ once formed is captured by PPh₃ rather than by disproportionation. The rate of oxidation of PPh₃ by $[Ru^{III}(bpy)_2(NO_2)py]^{2+}$ must be even more rapid. At a PPh_3/Ru ratio of 3:1, electrochemically generated $[Ru^{III}(bpy)_2(NO_2)py]^{2+}$ is completely captured by PPh₃ (Figure 1) and yet the rate of disproportionation of the Ru(III)-nitro complex exceeds $10^7 \text{ M}^{-1} \text{ s}^{-1.1}$

The electrochemical results, the ¹⁸O labeling experiment, and the second-order rate law for oxidation all suggest that oxidation of PPh₃ occurs as in reactions 5-7.

$$[Ru^{II}(bpy)_2(NO_2)Cl] \xrightarrow{-e^-} [Ru^{III}(bpy)_2(NO_2)Cl]^+ (5)$$

 $[Ru^{III} (bpy)_2 (NO_2)Cl]^* + PPh_3$

$$[Ru^{II}(bpy)_2(\dot{N}O)Cl]^+ \xrightarrow{-e^-} [Ru^{II}(bpy)_2(^+NO)Cl]^{2+} (7)$$

At the potentials used in the electrolyses, the reduced nitrosyl complexes are known to be oxidized to $[Ru(bpy)_2-(^+NO)L]^{n+2}$

The Ru(III)-nitro intermediates are weak to moderately strong oxidants as shown by their reduction potential values.

4821

Scheme I (note Figure 2)

Figure 2. Infrared spectra following electrolysis of an acetonitrile solution containing initially $[Ru(bpy)_2(NO_2)py]^+ (1.2 \times 10^{-3} \text{ M}), PPh_3 (7 \times 10^{-3} \text{ M})$ M), 1% 2,6-lutidine, and 1% water in 0.1 M [N(C₄H₉)₄]PF₆. v(PO) in O=PPh₃ occurs at 1194 cm⁻¹. The lower energy band arises from $[Ru(bpy)_2(NO_2)py]^+$: (1) before electrolysis; (2) electrolysis to 25% completion based on the initial amount of PPh3; (3) electrolysis to 50% completion; (4) electrolysis to 60% completion; (5) electrolysis to 75% completion.

1220

1190

Rather than thermodynamic driving force, the origin of the relatively rapid rates of disproportionation and of PPh3 oxidation may lie in the existence of two one-electron acceptor sites (Ru(III) and Ru-+NO) in the oxidant rather than a single two-electron site and in the ability of the oxidant to donate an oxide ion. Kinetic barriers to electron transfer at both Ru(III)⁸ and Ru(⁺NO)² sites are known to be low and there are no profound changes in coordination environment on reduction except for the loss of O^{2-} .

 $[Ru(bpy)_2(NO_2)py]^+$ and $[Ru(bpy)_2(NO)py]^{3+}$ are interrelated by the acid-base equilibrium in eq 8 and in water, the two ions are present in equimolar amounts at pH 3.8.^{1.9}

$$[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{NO})\operatorname{py}]^{3+} + 2\operatorname{OH}^-$$

$$\approx [\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{NO}_2)\operatorname{py}]^+ + H_2\operatorname{O} \quad (8)^1$$

$$K(25.0 \text{ °C}; 1.0 \text{ M NaCl}) = 1 \times 10^{20} \text{ M}^{-2}$$

In slightly basic solution the nitrosyl complex once formed (eq 6 and 7) is converted into the nitro complex. The nitro complex reenters the oxidation sequence in reactions 5-7, which means that the oxidation of PPh₃ can be made catalytic. Exhaustive electrolysis (at 1.15 V) of an acetonitrile solution containing $[Ru(bpy)_2(NO_2)py]^+$ (1 × 10⁻³ M), PPh₃ (1 × 10⁻² M), $H_2O(1\%)$, and 2,6-lutidine (1%) gave n = 21.1 by coulometry. The final ruthenium product was $[Ru(bpy)_2(NO_3)py]^{2+}$ (by cyclic voltammetry). The results are consistent with the catalytic cycle in Scheme I (n = 20) followed by reaction 9 (n =3) when the PPh₃ \rightarrow O=PPh₃ conversion (Figure 2) is complete.

$$[Ru^{II}(bpy)_{2}(NO_{2})py]^{+} + 2B + H_{2}O$$

$$\xrightarrow{-3e^{-}} [Ru^{III}(bpy)_{2}(NO_{3})py]^{2+} + 2BH^{+} \quad (9)^{1}$$

$$\stackrel{e^{-}}{\longrightarrow} [Ru^{|||} (bpy)_2 (NO_2)py]^{2^+} \qquad \qquad PPh_3$$

$$\stackrel{e^{-}}{\longrightarrow} [Ru^{||} (bpy)_2 (\dot{NO})py]^{2^+} \qquad \qquad O=PPh_3$$

The electrolytic chemistry observed here is the chemically catalyzed, net electrochemical oxidation of PPh₃ to $O = PPh_3$.

$$PPh_3 + H_2O + 2B \rightarrow O = PPh_3 + 2BH^+ + 2e^- \quad (10)$$

In an acetonitrile solution containing [Ru(bpy)₂(NO₂)Cl], water, and triethylamine, the oxidation of PPh₃ is also catalytic. Under these conditions cyclic voltammetry shows only a distorted wave for the $[Ru^{11}(bpy)_2(NO_2)Cl] \rightarrow$ $[Ru^{III}(bpy)_2(NO_2)Cl]^+$ oxidation and no rereduction wave, nor does a wave for $[Ru(bpy)_2(NO)Cl]^{2+}$ appear. The experiment shows that the chemical steps in Scheme I are rapid and that the rate determining step in the catalyzed oxidation of PPh_3 is diffusion of $[Ru(bpy)_2(NO_2)Cl]$ to the electrode.

The Ru(III)-nitro intermediates appear to have an extensive oxidase-like redox chemistry and their reactions with various reagents are currently under investigation. They are promising as oxidants, since in contrast to commonly used inorganic oxidants like Cr(VI) or MnO₄⁻, their reactivity properties can be varied systematically by controlled chemical synthesis, and their reactions can be made catalytic.

Acknowledgment is made to the National Science Foundation under Grant MPS75-11867 and to the Materials Research Center of The University of North Carolina under Grant DAHC15 73 G9 with the National Science Foundation for support of this research.

References and Notes

- (1) F. R. Keene, D. J. Salmon, and T. J. Meyer, J. Am. Chem. Soc., 99, 2384 (1977).
- (2) T. J. Meyer, R. W. Callahan, and G. M. Brown, J. Am. Chem. Soc., 97, 894 (1975); R. W. Callahan and T. J. Meyer, *Inorg. Chem.*, **16**, 574 (1977). Unless otherwise noted electrochemical results were obtained in solutions
- (3)0.1 M in $[N(n-C_4H_9)_4]PF_6$ at 22 ± 2 °C vs. the saturated sodium chloride calomel eletrode (SSCE). Platinum bead electrodes were used in cyclic voltammetry and platinum gauze electrodes for electrolyses. n values were obtained by coulometry, where n is the number of electrons passed per Ru in a constant potential electrolysis.
- (4) Disproportionation gives nitrosyl and nitrato complexes as products and n
- (4) Disproper for and 2).¹
 (5) Ca. 7% ¹⁸O-enriched [Ru(bpy)₂(NO₂)CI] was prepared by treating a suspension of [Ru(bpy)₂(NO)CI](PF₆)₂ with base in ¹⁸O-enriched water.⁶
 (6) T. J. Meyer and J. B. Godwin, *Inorg. Chem.*, **10**, 2150 (1971).
- Quantitative IR experiments were carried out using a Digilab FTS-14 spec-(7)trometer
- (8) R. W. Callahan, F. R. Keene, T. J. Meyer, and D. J. Salmon, J. Am. Chem. Soc., 99, 1064 (1977); R. C. Young, F. R. Keene, and T. J. Meyer, J. Am. Chem. Soc., 99, 2468 (1977).
 (9) For the [Ru(bpy)₂(NO)CI]²⁺-[Ru(bpy)₂(NO₂)CI] equilibrium, K is 1.4 × 10⁹ under the same conditions.⁶

F. Richard Keene, Dennis J. Salmon, Thomas J. Meyer* Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514 Received November 8, 1976

An Anionic Equivalent of the Friedel-Crafts Cycloacylation

Sir:

Our interest in the potent anticancer agent daunomycin¹ (1) has led us to consider possible synthetic routes² to this and other anthracycline antibiotics.³ The problem, as we see it, is to develop methods for ring building as in eq 1 wherein the alicyclic ring possesses the desired functionality. In this manner one may reduce the regiospecificity problems² associated with

Journal of the American Chemical Society / 99:14 / July 6, 1977